Lowness for Computable Machines
نویسندگان
چکیده
Two lowness notions in the setting of Schnorr randomness have been studied (lowness for Schnorr randomness and tests, by Terwijn and Zambella [19], and by Kjos-Hanssen, Stephan, and Nies [7]; and Schnorr triviality, by Downey, Griffiths and LaForte [3, 4] and Franklin [6]). We introduce lowness for computable machines, which by results of Downey and Griffiths [3] is an analog of lowness for K. We show that the reals that are low for computable machines are exactly the computably traceable ones, and so this notion coincides with that of lowness for Schnorr randomness and for Schnorr tests.
منابع مشابه
Thema Algorithmic Randomness
We consider algorithmic randomness in the Cantor space C of the infinite binary sequences. By an algorithmic randomness concept one specifies a set of elements of C, each of which is assigned the property of being random. Miscellaneous notions from computability theory are used in the definitions of randomness concepts that are essentially rooted in the following three intuitive randomness requ...
متن کاملLowness for Weak Genericity and Randomness
We prove that lowness for weak genericity is equivalent to semicomputable traceability which is strictly between hyperimmune-freeness and computable traceability. We also show that semi-computable traceability implies lowness for weak randomness. These results refute a conjecture raised by several people.
متن کاملLowness for Difference Tests
We show that being low for difference tests is the same as being computable and therefore lowness for difference tests is not the same as lowness for difference randomness. This is the first known example of a randomness notion where lowness for the randomness notion and lowness for the test notion do not coincide. Additionally, we show that for every incomputable set A, there is a difference t...
متن کاملLowness Properties and Approximations of the Jump
We study and compare two combinatorial lowness notions: strong jump-traceability and well-approximability of the jump, by strengthening the notion of jump-traceability and super-lowness for sets of natural numbers. A computable non-decreasing unbounded function h is called an order function. Informally, a set A is strongly jumptraceable if for each order function h, for each input e one may eff...
متن کاملLowness for Computable and Partial Computable Randomness
Ambos-Spies and Kucera [1, Problem 4.8] asked whether there is a non-computable set which is low for the computably random sets. We show that no such set exists. The same result holds for partial computable randomness. Each tally language that is low for polynomial randomness is on a polynomial time tree of bounded width. This research was done in 2003 but has not been published so far.
متن کامل